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Abstract 

A conventional direct method, using the Sayre equa- 
tion as a basis, has been shown to be capable of 
solving a small protein with data of 3.0 A resolution 
or better. An analysis of the Sayre equation, with 
data of various resolutions and with different lower 
limits of IEI for the contributors in the summation, 
shows that its effectiveness for phasing is indepen- 
dent of structural complexity but does decline as the 
resolution becomes worse. It is suggested that a 
practicable lower limit for the application of conven- 
tional direct methods is about 3.5/~,. For large 
macromolecular structures the number of contri- 
butors to the summation in the Sayre equation 
becomes too large to handle and it is suggested that 
real-space methods should be used instead. 

Introduction 

Direct methods, in the form of easily used computer 
packages, have been available for more than 20 years 
and the great majority of small structures can be 
readily solved by their use. While there are still 
occasional difficult small structures which exercise 
the skill of the crystallographer, it is a valid 
generalization to state that the standard small- 
structure problem in crystallography has been 
virtually solved. Even if direct methods do not pro- 
vide a solution then there are Patterson-search 
methods which are also very effective. 

The new challenges which now arise in crystal- 
lography are in the macromolecular area. This is a 
field which has been enjoying great success for more 
than three decades advanced by the ingenious exploi- 
tation of physical methods such as isomorphous 
replacement and, increasingly, anomalous scattering. 
However, the addition of heavy-atom-containing 
residues to a protein only gives isomorphism to low 
resolution and heavy-atom derivatives may not be 
available for some small proteins. Again, many 
proteins do not contain convenient anomalous scat- 
terers and cannot accommodate them - although it 
must be said that current experiments with long 
wavelengths from synchrotron sources offer the 
possibility of useful anomalous scattering from 

0907-4449/93/01 O013-05506.00 

sulfur, a common protein ingredient. Here we shall 
be taking a look at the problems associated with the 
application of direct methods to proteins and, by 
understanding the nature of the problems, suggest 
the best way forward for future work. 

A basic analysis of the use of phase relationships 

The basis of most direct methods is the tangent 
formula (Katie & Hauptman, 1956) which may be 
written in the form 

~(h) = phase of [ZE(k)E(h - k)]. (1) 
k 

However, the method SAYTAN, which has been 
shown to be applicable to a small protein with 
high-resolution data (Woolfson & Yao, 1990), is 
based instead on Sayre's equation (Sayre, 1952) 

F(h) = [f(h)/g(h)V]~'F(k)F(h - k) (2) 
k 

where f(h) and g(h) are the scattering factors for 
normal and squared electron density and V the 
volume of the unit cell. The equation is only strictly 
valid for equal resolved atoms although Shiono & 
Woolfson (1991) have shown that it also applies 
quite well over a range of conditions, including for 
structures at low resolution and with unequal atoms. 
It will be seen that the tangent formula is equivalent 
to using just the phase information from the right- 
hand side of Sayre's equation. 

The equation can be used to link normalized 
structure factors (the E's) which are normally 
employed in direct methods since, with enough data, 
an E map shows well resolved atoms despite diffrac- 
tion ripples. In this case, for an equal-atom structure, 

f(h) = N-1/2 (3) 

and g(h), which is the self convolution of the f ' s  in 
reciprocal space, is given by a summation 

g(h) = V*2f(k)f(h - k) (4) 
k 

where V* is the volume of the reciprocal lattice cell. 
Since VV* = 1 then, inserting the results (3) and (4) 
in (2), we have Sayre's equation for normalized 
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Table 1. The range o f  values o f  Q for different 
resolutions for IE(h)l = 1.4 and structures with an 
average number o f  non-hydrogen atoms per unit 

volume in the crystal 

Q~x corresponds to a reflection very close to the origin of reciprocal space 
while Qm,n corresponds to a reflection at the resolution limit. 

Resolution (A) 
0.77 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Q ~  31.5 20.7 10.8 6.7 4.3 2.96 2.05 1.44 
Q,,,, 16.7 11.4 5.6 3.3 1.9 1.13 0.61 0.26 

structure factors 

E(h) = [N~/2/M(h)]Y~E(k)E(h - k) (5) 
k 

where M(h), the total number of terms in the sum- 
mations in both (3) and (4), depends on Mtot, the 
total number of reciprocal lattice points within the 
resolution limit, and the position of the point h in 
reciprocal space. Equation (4) was first given by 
Hughes (1957) in the form 

E(h) = N ~/2 E(k)E(h - k) k. (6) 

In SA Y T A N  (5) is used in a quantitative way to 
find phases for the larger structure factors which will 
satisfy the equations for both the large E(h) and also 
a selection of small (ideally zero) E's. It is known 
that for small structures most three-phase rela- 
tionships have values clustered around zero (modulo 
277") and this implies that the components in the 
summation are fairly well lined up in the complex 
plane. This then is the necessary condition to satisfy 
Sayre's equation. Equally it is also well known that 
for very large structures the three-phase invariants 
have fairly flat distributions between 77" and - 7r with 
only a modest hump in the region of zero. The 
contributors in the complex plane must, therefore, 
add up in a way which looks fairly random although, 
obviously, there must be a bias which leads to satis- 
fying (5). We are now going to examine these ideas in 
a more quantitative way. The approach will be to 
look at the distribution of magnitudes which would 
result from using random phases on the right-hand 
side of (5) to see how likely it is that an equation for 
an E(h) of average magnitude could be satisfied just 
by chance. If the correct magnitude could easily be 
obtained with random phases then this might imply 
that the set of equations is not very restrictive and, 
therefore, that its potential for phase determination 
is low. 

We now write 

X =  EE(k)E(h-  k) = Xlr/(h,k)lexp[Rb(h,k)] (7) 
k k 

and consider the probability distribution of IX] with 
random 0's. This problem has already been solved 
by Wilson (1949) since IX] has the distribution of a 
structure factor for a non-centrosymmetric structure 

with M(h) atoms with scattering factors Iv(h,k)l and 
positions giving the phase factors in (7). From this 
we find the distribution 

P(lXl)  = ( 2 / . ~ ) l x l e x p [ - I x  2/~:] (8) 

where 

2: -  Eln(h,k)l 2= EIE(k)I2IE(h- k)l 2. 
k k 

Assuming that the values of [E(k)l 2 and IE(h-k)l 2 
are uncorrelated then 

2:= M ( h ) ~  ]E(h-k)12 = M(h) (9) 

since, by definition, ~-~ = 1. 
For this distribution Ixl = [ 2 M ( h ) / ~ ]  1'= and Ixl = - 

,~ = M(h) so that the standard deviation of the distri- 
bution is 

trx = (~X-'~ - ~]2)1/2 = 0.603M(h)~/2. (10) 

As a measure of the likelihood that Ixl could 
attain a value which would satisfy the magnitude 
component of the Sayre equation we now find how 
many standard deviations Ixl is from the required 
value. This is 

Assuming that a direct-methods approach would 
use all the data and all possible relationships then, 
for a given resolution, the surprising result is found 
that the values of Q would not depend on the 
structural complexity. For a given number density of 
atoms in the unit cell and data resolution the ratio 
Mtot/N is constant and MOO/Mtot is the ratio of (the 
common volume of two reciprocal lattice limiting 
spheres with centres separated by the vector h):(the 
volume of one of the spheres). For a structure with 
data to a resolution of 0.77 A, the Cu Ka limit, the 
ratio Mtot/N will be about 200 and M(h)/N will vary 
between about 60 and 200. The range of values of Q 
for this resolution is given in the first column of 
Table 1. It is clear that the likelihood of satisfying 
the magnitude requirements of Sayre's equation for 
greater than average ]E(h) I with random phases is 
extremely low. 

For the resolutions usually available with protein 
data, the ratios of M(h)/N will be much smaller, and 
Table 1 shows the ranges of Q for various resolu- 
tions. For some of the low-resolution columns it 
appears that a random starting set of phases will be 
fairly close to satisfying the magnitude aspect of 
Sayre's equations and possibly a small amount of 
processing with a tangent-formula approach will 
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soon reach magnitudes close to the true ones while 
also giving phase consistency. We shall now look 
further at this question, taking an empirical 
approach and also the more realistic situation where 
only a subset of the largest E ' s  are used in the 
phasing process. 

Using subsets of data 

Mukherjee & Woolfson (1992) have applied 
SAYTAN at various resolutions to the structure 
avian pancreatic polypeptide (aPP), the trial struc- 
ture used by Woolfson & Yao (1990). This structure, 
with space group C2 and Z = 4, contains in the 
asymmetric unit a 36 amino-acid peptide plus Zn 
plus 80 H20. The results obtained are shown in 
Table 2 and are derived from 1000 trials, starting 
with random phases, at each resolution. As expected 
the quality of the result obtained (measured in terms 
of mean phase error) deteriorates with the resolution, 
although the best sets of phases at each resolution 
give meaningful electron-density maps which pro- 
vide, at least, a useful basis for fitting models. For 
example, the conventional correlation coefficients for 
the maps obtained at 1.77 and 2.0 A resolution are 
0.58 and 0.52 respectively. Table 2 shows different 
patterns of the number of reflections and the number 
of relationships together with different values of Emi n 

(the least value of IEI for the subset of reflections 
whose phases are being sought). These patterns were 
the result of trial-and-error in finding the best condi- 
tions at each resolution. It will be shown that a 
systematic explanation can be given for these appar- 
ently haphazard patterns. 

We consider Sayre's equation written in a modified 
form 

N 1/2 
IE(h)l = M(h)ZlE(k)E(h-k)lcos¢'3(h,k) (12)  

where 

qb3(h,k ) = ~(h)- ~(k) - ¢p(h- k). (13) 

We now consider the value of the summation in (12) 
if only terms for which IEI-> [Elmi. are included. 
Before we do this we shall derive some results based 
on the acentric distribution of E ' s  given by Wilson 
(1949). This is, for E ' s  

P ( I E I )  = 2 [ E l e x p (  - IEIZ). (14) 
It is easily found that the proportion of E ' s  with 

IEI-> [E[mi, is exp(- lE[2i . )  and that their average 
value is 

E 2 IEI > Ig,.,°l 1 + E 2 = rain" (15)  

We now write 

X =  ~ }E(k)E(h - k)Jcos ~ffh.k) (16) 
k,p 

where the p under the summation sign indicates that 
the E ' s  in the summation all satisfy the condition [E 1 
--- IElmt-" TO estimate the effect of the limited number 
of terms in the summation we shall assume that the 
reduction factor, r, due to the limit in IEI is the same 
for the true values of the terms as can be found by 
considering their expectation values. While this 
cannot be strictly true it should be a reasonable 
approximation. 

From (16) we may write 

• "= Y IE(k)llE(h- k)lcosc/,3(h,k) (17) 
k,p 

where we assume that the individual magnitudes are 
known and the expectation value of the cosine term 
is given by 

cos~3(h,k) =/,(K)/Io(K) (18) 

where I~(x) and lo(K) are modified Bessel functions 
and 

x = 2N- ,/2 E(h)E(k)E(h - k)l. (I 9) 

For large structures the values of x will be small 
and then the approximation may be used 

/ , ( , , ) / /o (K)  = ,, /2. (20)  

With this approximation, for a particular structure 
and E(h), we may write that 

~ =  N-"ZlE(h)IYIE(k)IZlE(h-k)I 2. (21) 
k,p 

If the terms in the summation are not correlated 
(and they will be only weakly) then from (15) 

= N-"21E(h)lM(1 + [El2min) 2 (22) 

where M is the number of terms in the partial 
summation. From this we find the ratio we require 
which is 

r =  M(1 + [El2in)2/M(h). (23) 

Thus a modified Sayre equation, with a statistical 
correction for the limit in the magnitudes of the E ' s  
used in the summation, is 

E(h)=(N1/Z/M)[Y.E(k)E(h-k)]/(1 + [El2in) 2. (24) 
k,p 

If we now write, corresponding to (7) 

Y = Y E(k)E(h - k) (25) 
k,p 

then, again using Wilson statistics, if random phases 
are used on the right-hand side of (25) then I Y has a 
probability density with 

IYl = (2M/=)'/2(1 + [El2in) (26) 

and 
t r y =  (1 +[EI2,,)MI/2(1--2/77") 1'2. (27) 

The departure of the mean value of the risht-hand 
side of (24) from IE(h)l, if random values are used is, 
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Table 2. A summary of  results in applying SA YTAN to aPP data at different resolutions 

NREF is the  number of reflections used, IEIm~, is the minimum IEI used, NREL is the number of linking three-phase relationships and MPE is the m e a n  
phase error. 

R e f i n e m e n t  
Resolution (A) N R E F  IElmi, NREL process Result [MPE (°)] Minimum MPE (o) 

1.0 800 1.7 9726 SA YTAN 11 sets 38 
[-40] 

1.5 650 1.4 11620 SA YTAN 29 sets 48 
[ -  501 

1.77 556 1.3 14217 SA YTAN 16 sets 54 
1-551 

2.0 600 1.0 26323 SA YTAN 30 sets 62 
(-641 

2.25 350 1.2 6809 Parameter shift 12 sets 63 
and SA YTAN [ -  65] 

2.5 300 1.14 5841 Parameter shift 8 sets 68 
and SA YTAN [-69] 

3.0 3 ! 5 0.9 9841 Parameter shift 15 sets 69 
and SA YTAN [-69] 

Table 3. Values of  Qv for the S A Y T A N  trials 
described in Table 2 

Resolution (A) 
1.0 1.5 1.77 2.0 2.25 2.5 3.0 

Qv 0.90 0.73 0.91 0.85 0.44 0.34 0.34 

as a number of standard deviations of the distri- 
bution, 

Qv = 1.66[(MIN)1/2( 1 + El2in)lE(h)l- (2/~')I'2]. 
(28) 

When Table 1 was discussed previously it was noted 
that values of Q were quite small for low resolution 
and would probably mean that Sayre's equation 
could not be effectively used for finding phases. We 
shall now try to assess the significance of these values 
by calculating values of Qv for the results found by 
Mukherjee & Woolfson (1992). 

The significance of Q values 

It is possible from the information given in Table 2 
to calculate values of Qv for any value of [E(h)[. The 
value of N is taken as 1200, which is approximate 
and does not include water, while M may be found 
from 6 x NREL/NREF,  remembering that each 
relationship contributes to three reflections and that 
a single contributor E(k)E(h-k)  is partnered by 
another, which is E(h-k)E(k) .  The values of [E[mi, 
are also given at each resolution. 

The values of Qv are given for the various resolu- 
tions in Table 3 for [E(h)[ = 1.4, which we are esti- 
mating as an average for the larger E ' s  in the system. 
It will be seen that these range from 0.91 to 0.34 and, 
coincidentally, the three lowest resolutions, with 
values of Qv from 0.34 to 0.44 did not give a solution 
with SA YTAN alone but had to be front-ended with 
a few cycles of a parameter-shift process. 

On the basis of these results it is suggested that the 
value of Qv is a useful measure of the likelihood that 

an application of a Sayre-equation-based method 
would be successful and a lower value of Qv of about 
0.35 is indicated for success. A comparison of Tables 
2 and 3 also suggests that at any given resolution as 
large a system as possible should be used, although a 
lower limit of 3.5 A resolution seems necessary for 
any method based on the Sayre equation even if all 
data is used. 

Concluding remarks 

Using the Sayre equation in a quantitative way offers 
advantages over the use of the more conventional 
tangent-formula method. However, there is a cost in 
computer time for the extra effectiveness although, 
for large structures, there is no alternative to paying 
this cost. 

We have seen that there is an increase in power if 
more data are used and, ideally, it would be best to 
use all available reflections and relationships. This is 
not practicable for large structures for which the 
order of 104 reflections would require some l0 s rela- 
tionships to be considered. In this case there are 
advantages in changing from a reciprocal-space 
method to a real-space method and Zhang & Main 
(1990a,b) have successfully incorporated the Sayre 
equation into a real-space process of phase extension 
and refinement. 

The analysis leading to the calculation of Q or Qv 
is only approximate and no allowance has been made 
for that aspect of using the Sayre equation in which a 
whole pattern of magnitudes is matched approxi- 
mately rather than individual magnitudes precisely. 
Nevertheless, it is believed that the value of Q or Qv 
wit',, indicate the possibility of success or otherwise in 
the application of the Sayre equation, say through 
SAYTAN,  and finding a subset of E ' s  and rela- 
tionships which optimizes Qv could be a useful pre- 
liminary to actually running the program. 

The question arises of whether the results given in 
this paper are typical of what might be expected with 
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proteins. The first point to note is that aPP contains 
a moderately heavy atom (zinc) and this certainly is 
helpful in solving the structure. If the zinc contri- 
bution is artificially subtracted from the observed 
structure factors, in a way which retains the errors of 
measurement, then no solution is found with the 
modified structure in 1000 trials with SA YTAN, even 
at 1.0 A resolution. It is possible, even probable, that 
a larger number of trials would find a solution but, 
whatever the situation with respect to this particular 
structure, the principle of using a set of reflections 
and relationships giving as high as possible a value of 
Qv consistent with the need to minimize computing 
requirements to the capability of the available com- 
puter, should still be valid. 

I am grateful to the Science and Engineering 
Research Council, the Wolfson Foundation and the 

Wellcome Trust for support of direct-methods work 
at York, of which this is a component. 
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